How to Make Flexible LED Panels (DIY Flex Lights!)

How to Make Flexible LED Panels (DIY Flex Lights!)

In this video we’re going to make some flexible
LED panels for lighting video or photography work. Not only are these things incredibly
bright but they’re also super practical thanks to their ability to be folded into pretty
much any shape you want. They’re also dual colour temperature, and what this means is
that you can fade between warm and cool white for different lighting effects.
They’re also super light as well, they weigh in at just 200 grams, which is just under
half a pound, and that allows them to be mounted pretty much anywhere.
And the best part? Well, they can be built for around £40, which is roughly $60 – which
is incredible value, especially when you consider how bright they do go and how good their colour
rendition is. More on that in a bit though. This is something that’s been highly requested
by you guys, so sit back and enjoy. So the first thing we’ll need for this build
are some LED strips. These have surged in popularity in recent years, and are readily
available from places like Amazon and eBay for very little money. However, one huge consideration
when buying these strips is the quality of their light output, which is a very important
factor when it comes to video work. You see, cheaper strips tend to have very
low CRI values, meaning that colours can be very muted and sometimes suffer from horrible
colour casts. Finding quality strips for not much money is a big challenge, and I went
through dozens of strips from different suppliers before I found a set that were good enough
for this build. Despite their low cost, the way they render colours is fantastic – certainly
good enough for most uses as I will demonstrate later.
So that you guys won’t have to hunt around I’ve placed international purchasing links
to these good quality strips in the description. Though, as they ship directly from a factory
outlet store in China, you may want to order them straight away so that you aren’t left
waiting for them to arrive when you want to start on this project.
As we’re making a dual-colour panel, we need to get two different colour temperatures to
fade between. There are three variations to choose from, so make your choice based on
your needs. I’m going to go with the pure white version, and the neutral white version.
This is because when they’re both at maximum brightness the colour balance ends up being
very similar to daylight, which is a fantastic midpoint to have. Some of you will want the
panel to extend more towards tungsten however, so feel free to use pure white and warm white
if that’s what’s required by your needs. A single 5m roll in each colour temperature
is enough to make a roughly 30cm square panel, which is what we’re going to be making first
as it’s a great size to start with. So the first thing to do is cut each strip
into 30cm lengths, making sure to always cut through the exposed copper pads.
As you cut the two rolls, make sure that you keep each colour temperature separate so that
you end up with two piles, each consisting of 16 strips. These colour temperature sets
will be wired up separately later so that each can be dimmed independently, giving us
the ability to fade between them. With that done it’s now time to work on the
backing. What we’ll need for this is some false leather. While there’s nothing stopping
you from using other materials, false leather is a good option because it doesn’t fray and
is easy to work with. First we’ll mark and cut out a 38cm square,
and then place it backside up on a flat surface ready for us to begin sticking the strips
to. The strips themselves have a sticky adhesive
on the back, a bit like tape. The problem is that it doesn’t stick very well to this
kind of surface, so it needs some extra help. What we’ll need is some flexible glue that
will adhere to both the fabric and the back of the strips, which can just be squashed
down on top. This first strip needs to be positioned equidistant from each side, and
about 3cm up from the bottom. Now we need to repeat the process, but this
time with a strip of the other colour temperature. When you do this, make sure that each strip
is put on the right way up by observing the writing. This needs to be repeated over and
over in until all of the strips have been stuck down in an alternating colour temperature
pattern. As you go, it’s likely that some of the strips
will start peeling back as the glue isn’t particularly fast drying. To combat this,
we’ll squash it underneath something flat and then leave it to dry, which can take several
hours depending on the glue. I left mine overnight just to be sure.
Once dried, the strips the strips should be very secure, and, as you can see, it’s so
flexible that you can even roll it up. Now it’s time to add the wiring. We’ll need
two sets of wires for this – one black and one red. As we’re going to start by wiring
up the negative connection, we’ll get a bit of the black wire and strip off a fair bit
of insulation from one end. Now we can move up the wire about 2.5cm and pull that section
of the insulation towards the end of the wire like so. This needs to be repeated until there
are 9 total exposed sections on the wire. Now we need to fold the wire at each of these
points, after which it’s ready to solder to the LEDs.
We’ll start at the bottom of the panel. As you can see, each strip has the positive and
negative pads clearly marked, so we can solder our black wire to the pads marked as negative.
As we have two alternating rows of colour temperatures however, we need to skip every
other row so that we only wire up one colour temperature set.
We then need get a red wire and do the same again, soldering it to the positive pads instead.
As you can see, the last sections of the wires need to be left loose.
The whole process needs to then be repeated, only this time starting from the other side,
so that the wires meet in the middle. Now, you might suppose that we’re going to
connect these wires up in parallel, but NOPE. Instead, what we’re actually going to do is
wire them up in series. This means that the voltage supplied to each strip is halved,
and there are several very good reasons for doing this which I’ll go into further detail
about later. So we’ll trim down one of the black wires,
and then solder the red wire from the opposite side to it. This leaves us with a red and
black wire which we’ll later use to power the strips.
Now what we need is some twinned wire, with each wire containing two cores. Each of the
cores needs to be reasonably thick so that they can carry the power effectively. One
of these pairs can then be soldered to the red and black wires, taking note of the polarity
and using some heatshrink or electrical tape to insulate the joints afterwards.
Now that we have one colour temperature set wired up we can move over to the opposite
side and wire up the other colour temperature set in the same manner. Here I used a white
wire for the positive connection just to differentiate it.
Now we can take a knife and score a little slot in the bottom of the panel for the wire
to be threaded through, after which we can use a sharp point to make some holes on either
side of the wire and use a cable tie to clamp the wire to the false leather, leaving enough
length on the other side for the wires to run along the parameter of the panel.
Now later on we’ll be folding over the material to neaten up the edges and protect the wiring,
but before we do that we’ll just mark along the fold paths until they intersect. Now what
we can do mark the point 3cm along from the intersection on each side, and then use a
knife to cut a slot along this length, giving us an inner corner.
Now what we need to do is cut two 5cm by 5cm squares out of some spare false leather, and
then cut them in half diagonally, giving us four right angle triangles.
On each triangle we now need to make a mark that’s 2cm away from its hypotenuse, and then
make a parallel cut down its length. After doing this to all four triangles, we
can slot them underneath the inner corners we made earlier and add some superglue along
the outside edges. We’ll follow this up with some fabric glue and then fold the tabs over.
The superglue works as a quick grab to keep the tabs held down until the slower drying
fabric glue cures. After you have done this four times you’ll
have some little corner pockets which we’ll later use to mount the panel onto an arm.
Now as the panel at this point is still super floppy, we need to give it some rigidity so
that it can support itself. To do this we’ll need some steel wire – usually found in the
gardening section of most hardware shops. This wire needs to be bent around the perimeter
of our strips and then joined together where they meet with some superglue. This glue is
just to hold it in place to make the next steps easier, rather than for structural integrity.
After putting some masking tape down over the strips we need to now add a generous amount
of glue around the edges. Silicone types are great for this so long as they dry flexible,
but make sure that it isn’t an acid-cure variety as that will likely corrode the metal.
We don’t need to go right up to the corners at this point, as they’ll be sorted out separately
later. So now what we need to do is fold over the
material and use something like a ruler to push the material’s edge downwards whilst
the glue dries. The masking tape can then be peeled off and
any excess glue carefully trimmed with a knife. When you do this be careful not to cut into
the strips underneath. After this has been done for all the sides
we need to work on the corners. We’ll start by cutting through the loop and then trimming
them diagonally so that they meet neatly at a 45 degree angle.
We can then glue them down, using some masking tape if necessary to help hold them in place
whilst they dry. Once each corner has been done the panel should
look like this. Thanks to the steel wire we just added, it can now be easily bent into
different shapes, and it should be strong enough to support itself.
The next thing to sort out is the dimming controls. What we’ll need for this are two
specific dimmers, links to which you can find in the description. These dimmers work by
pulse width modulation, which is usually something you should avoid when it comes to lighting
for video work. However, they operate at such an insanely fast rate, 10khz to be exact,
that any problems with flicker during video recording are completely eliminated at shutter
speeds below about 1/1000th of a second, so it’s perfectly adequate for this use case.
So what we’ll do first is get a piece of spare false leather and poke some holes in it for
the dimmers’ potentiometer’s to fit through. Before pushing through the shafts, we’ll of
course pull off the knobs and unscrew the nuts.
On one side we can now make two more holes for the panel’s power wire to fit through,
after which each individual pair of wires can be soldered to the outputs of the dimmers,
being careful of the polarity, which is thankfully marked on the bottom.
Once both wires have been soldered in place we need to bridge the DC input contacts with
some wire so that they’re both joined in parallel like so.
With that done we need to now get a length of cable containing two wires, like an old
mains cable. We then need to make two more holes on the other side of the dimmer unit,
through which we can thread this cable and solder it to the DC input of the nearest dimmer.
Now we can add some glue to the bottom of both dimmers and stick on a thin piece of
board to join them together. After this has dried the false leather can
be drawn tightly around the dimmers and glued in place with some superglue. After cutting
down each corner, the sides too can be tightly glued in place.
Now the nuts can be tightened back up, and the knobs pushed back on. This gives us a
nice little dimming unit that’s light and very compact.
The last thing we need to do is get a power socket that’s the right size for the power
supply that you’ll be using – more on that in a sec. It can then be soldered to the other
end of the DC input cable, using some heatshrink to make it nice and neat.
Now the panel is ready to be powered up, for which we’ll need a 19v power adapter. Now
you might be thinking ‘hold on, the LED strips are rated for 12v, won’t powering them with
19v fry them?’ Well, no, because, as you remember, we wired the LEDs into two groups of 8, which
we then connected in series. This means that with a 19v power supply, each strip receives
only 9.5v. There are some very good reasons for doing this, the first of which is to improve
the panel’s longevity. You see, the strips themeselves when powered
with 12v actually get quite hot. This isn’t too much of a problem if they’re mounted to
a metallic surface, as it would help to dissipate the heat. However, we’ve mounted them to fabric,
and there’s really nowhere for the heat to go, so powering them with 9.5v is much more
sensible as it means that they now only get vaguely warm, allowing the panel itself to
be left on indefinitely without any worry about the LEDs overheating and having a reduced
life span. The second reason for undervolting them is
that it makes powering them SO much easier. 19v power adapters are very commonplace thanks
to their use with laptops. You may very well have an old power adapter just lying around
which you can reuse with this project, thus keeping the overall costs down – which was
one of the main priorities with this build. All you’ve got to make sure is that it can
supply 3A or more, and you’re good to go. So the only thing left to do now is make a
mount to which we can attach an arm, allowing us to clamp the light to pretty much anything
we want. To do this we need two thin sheets of aluminium,
each being 3cm wide, and 50cm long. As they’re so thin it’s pretty easy to trim these off
a larger piece by simply scoring first with a knife and then bending it repeatedly until
it separates. The corners can then be trimmed down to make
a 90 degree point at each end. While I didn’t do this to mine initially, I do recommend
that you use a file to round off these edges afterwards for safety reasons.
Now we can clamp them down on top of each other, and drill a hole through them at the
very centre. For a clean accurate cut it’s worth starting with a small drill bit, progressively
using a larger one until it’s 6.5mm wide. A knife can be then used to tidy it up.
The next thing we’ll need is the arm itself, which features a clamp at one end. This thing
can be adjusted into pretty much any position, and when tightened is very rigid. Again, I’ve
placed international purchasing links to a good low cost one in the description.
All we need to do now is unscrew the pad from one end , push the bolt through the hole in
our aluminium strips, and then screw the pad back on with the rubber bit facing the aluminium.
The corners of the strips can then be inserted into the corner pockets on the panel, and
with that the whole thing is completed! So how well do they perform? Well, colour
rendition wise they do an excellent job, and I measured a CRI of 85 with my spectrophotometer,
which isn’t bad at all considering the cost of the strips. Here for example I have the
LED panel off to my left, and as you can see skin tones look lovely and natural. In fact,
compared to my previous panel that I built with lower CRI strips, it positively shines.
Speaking about shining, they’re also very bright, despite the strips being undervolted.
This is thanks to the LEDs themselves being really efficient, so watt for watt produce
a lot of light. For example, here’s a comparison of the brightness with my old panel. As you
can see, they are roughly equivalent, but the main difference is that the old panel
uses TWICE AS MUCH electricity to produce the same amount of light as the new one. Crazy.
I personally really love how lightweight these are as well, as it allows you to put them
pretty much anywhere, and if you knock one over it’s unlikely to damage anything.
Don’t assume they’re just for video work either – since making a few I’ve used them regularly
for general illumination as the light they give off is so pleasant. They also make for
excellent work lights too, particularly because of their versatility when it comes to mounting
options. So, overall a very solid design that’s not
only practical but also performs well. By the way, if the 30cm square version isn’t
bright enough for you, it’s very easy to double the brightness by using twice as many LED
strips, giving you a panel with twice the surface area. The only differences in the
build process are that you need two rolls of LEDs in each colour temperature, so four
in total, which need to be cut into 45cm lengths. These can then be stuck to a 51cm square cutout.
When I was making this one, I tried a different glue method by spreading it around the area
first. It’s a little quicker doing it this way, but make sure that the glue doesn’t start
to dry by the time you put on the last few strips.
The wires too need to be longer, and feature 12 exposed sections instead of just 9. Also,
the power adapter has to be able to deliver at least 6A instead of 3.
The brightness of this bigger panel is incredible, so if you need some seriously bright panels
I do give them a hearty recommendation. Though, for most of us, the 30cm square version is
more than adequate. So I hope you enjoyed this video. If you have,
don’t forget to hit that like button, and maybe consider subscribing as well because
that way you’ll be notified next time I upload my next how-to video. I’m Matt, and thank
you very much for watching.

100 thoughts on “How to Make Flexible LED Panels (DIY Flex Lights!)

  1. I know this is an old video and this comment most likely won't get read but… WHY?! I've seenyou do this several times and it makes no sense, why do you stubbornly solder cables to the underside of screw terminals… it makes no sense.

  2. Thank you! What a brilliant, and clearly explained and demonstrated video (you have a great voice too, by the way). I've been trying to find something to provide more light for my orchids grown indoors, although I'd need to use waterproof lights because of the humidity. Commercial ones are way outside my budget, but this has really shown me how I can move on with the project for not too much money. Some of the bits I'd have to ask my partner to do for me, but most of it I could do myself. Fantastic!

  3. Quick question. One of my dinners, when I turn it on. Seems to kill the whole thing. The other dimmer works perfect and one set of lights turn up. The other dimmer not so much, at first turn on, the red light on the panel turns red. As soon as I turn it up, all lights go out and the red lights on both panels start flashing. Any thoughts? Soldered and re-soldered. No dice. Faulty dimmer, or fault elsewhere?

  4. If you want to make a flexible LED panel, you can find the best material here. The LED strips have CRI 90 and CRI 95. If the strip lights are made with genuine 3M adhesive backing, you don't need the cloth glue. LEDFactory100 made it.

  5. I want to build a jalousie, which lights in the night to simulate day light in winter for example. But it should let the daylight through like normal jalousies. If you have any ideas please comment below! Thanks

  6. This video its what all Youtube should be, teaching and not fucking vapid content.

    Rant off.

    You save me thousands of bucks and help me more than you can ever imagine, thank you.

  7. Please make more videos about the light and equipment for video makersπŸ™πŸ»πŸ™πŸ»πŸ™πŸ»πŸ™πŸ»

  8. Hi! Great video!

    If you want free music for your YouTube videos, visit us at

    or our channel AwesomeTune 4 You

  9. bravo, informative as well as entertaining. The only thing I would like to understand better is the cost of each component. Oh yes, one more thing. How much time it takes to complete. Thank you handsome

  10. You can get the Travor bi-color LED lights now for twice this price at 60 by 30cm. I think its worth it just to save the man hours it takes to build one from scratch plus the better build quality and the included remote definitely makes it worth the money. But i might do something like this for a budget RGB flex panel since there are no cheap options for that.

  11. Hi. The ebay link for the LEDs seem to be offering different lighting options (warm white, natural white, cool white and daylight white). Is the link still valid? It costs slightly more now, in any case – 24.75.

  12. DIY Perks. Do you sale does incredible Flexible LED panels? If so, I’m interested to get couple of these. For a special proyect, I have in mind. Please, can you contact me back. Thank you. Great job.

  13. Would it make a more even light to offset each strip so there are not such regimented rows of individual light sources? Interested to know if you had tried anything like this?

  14. Dimmer available from amazon in the UK.

  15. At the end of the video you have suggested a big panel (51 cm X 51 cm), also suggested the power supply of 6.32A, but you didn't gave any information about dimmer, so can you suggest some more capable dimmers for that.

  16. Led strips in India don't come with CRI markings. I am trying to make a ring light, is there any way we can find the cri rating of a given strip?

  17. Matthew, thanks a lot for this (and others) tutorials.
    Saddly I did not find some materials that you used and I needed to improve others with 3D printing, so this is my result:

  18. Man. I need to find someone that can build these DIY projects for me. XD. I lack the…”green thumb” for this sort of work.

  19. Almost 3 years after watching this vid I finnaly build it. Thanks Matt it is an amazing proyect and they performe excellent!

  20. This is great! I need some extra lighting for my photo booth and think I'll just make a couple of these and split off from the 9v power supplies currently powering the built in lights and have these things just fold out like wings. I'll place some diffusion fabric over them so my subjects aren't too blinded and also to protect the lights when they get folded back into the photo booth over the video screen. I don't need to dim them or go to warm, so just the white natural will do. Awesome tutorial.

  21. I would like to clarify if a 19V, 3A power brick really enough to power almost 10 meters worth (60W/5meters) of LED strips as I am interested in doing this project. Each color group of LED (5M each) will draw about 2.88A so that would be 5.76A total. Don't you need a 6A power brick for this?

  22. Omg!!!! This is amazingggg work!! Congrats it’s awesome πŸ€“ and thank you sooo much for sharing!!!!😁😁😁😁😁😁😁

  23. I'm pretty sure I used the glue used but I cannot get the strips to stick to the fabric adequately. I think maybe I wanted to go too quickly and didn't let that dry enough. Any thoughts on how to get it to stick better?

  24. I have found the commercially available ones out there are reasonable in price but once you get into ones that have decent output you immediately get into a very high price. I'd prefer the lights in general to be at 2 meters but alot of these spec themselves at one meter. Very hard to put a light panel that close to an interviewee or any talent. So I'd like to build at least ONE that can cast some serious light and not break the bank. Have you updated the design ? I will likely try the large panel version

  25. I've been looking at LEDs for a custom work bench light. TRYING to find a versatile solution so I can take them with me. Than you! I will probably be building the smaller one soon!

  26. Love the way you present it and smallest of the information provided…great product and superb video……Thanks a lot.

  27. Hey man! Would you mind putting the names of all the items you used or links to purchase them? Been trying to find that power socket or the name of that wires you used for a while now! Thanks so

  28. Awesome video! I'm planning on making these with some strips that are a higher CRI:
    It looks like these both have a 24V input. Since that is double what you used in the video, would I just need a power supply with double the voltage as well? 38V?

  29. I know this is an old topic, but I've a request for a mod to this project and would like help figuring out some details. I'd like the ability to control the total output with an additional knob. Do you think that would be possible and what kind of device could do that? Could the pwms be stacked or could just a standard led dimmer be put before the pwms? Or would that be too complicated? I think it would be nice to add this feature so that when you get the color like you want it, you could then adjust the intensity while keeping the color the same. thanks!

  30. I didn't see anyone ask this question, so forgive me if I missed it. What is the make and model of your spectrophotometer

  31. How can I power this with a battery? it can be smaller, I just need enough light to be able to take a picture of a room with a 360 camera. Normally I sit the camera in middle of room on a tripod. I need someway to bring some light in the room where there's no electric available. It would be cool to somehow attach LEDs to tripod legs or something

  32. Can you make one for me and ship to Philippines? How much? I'm really very interested and awesome.

  33. I wish I can make these lights it would save me so much money on lighting the video is really good and easy to follow but I can't do the wiring or use a soldering iron I am 45 and I tried so many times but failed I suck.

  34. See, now this guy is way worth watching than any of those useless "life hack" videos. This is the real life hack shit!!!!

  35. Hi!, can you make one that is, or can be connected to a solar panel, please for in and out door please.
    Will be great if you let me know.

  36. I'm surprised that no one else has mentioned that a CRI of 80 is actually a bit trash. Normal led bulbs from the grocery store are almost always 80+ CRI like the LEDs he used in this build. You should be aiming for 92+

  37. I'm thinking some kind of magnetic part on the back, make one for my dad working on a car. Just pop it to the bottom of the hood or whatever.

  38. Can you just use the super bright light instead of the mix of lights that you mentioned here and what can I use as a diffuser to cover the light to soften the light for portraits etc.? /also will I Need a dimmer control or can I eliminate it without compromising the output of the light. Is the list of the gauge wire in the "show more" link?

  39. Led strip lights on a reel = $22
    Led video light kit = $29
    Who would bother doing all this work for the same result for a $7 difference? You can buy the flexible panel lights for $50. Still worth buying instead of wasting a day burning yourself with a soldering iron and getting glue all over your hands and table.

  40. I only need one single colour (Daylight). Should I use non-twin wire, hence one wire with two cores and connect the strips as you did? What about the adapter? Will I need a 9-10V adapter for one group of LED strips?

  41. What if I only use one roll of LED strips, do I need a 19V adapter that outputs 1.5W?

    Or do I need a 9-10V adapter that outputs 1.5W?

  42. I would like to order two small versions and one larger version. Can you please give me a quote and an estimated time that you would be able to build these?

    Fantastic work I absolutely subscribed to your channel and look forward to more but I am a software developer and just don’t have the time or skills but you do so I would so appreciate it.

    Cheers mate!

  43. Hi love your video. Very informative. Would be able to do protable AC power pack for powering three at least 300w studio flash out door in budget. Regards

Leave a Reply

Your email address will not be published. Required fields are marked *